

Simulation der Echosignale komplexer Defekte für die Ultraschallprüfung großer Stahlkomponenten

Hubert MOOSHOFER*, René MARKLEIN** * Siemens AG Corporate Technology ** Ingenieurbüro Dr.-Ing. Marklein

Kurzfassung

Zur Simulation von Ultraschallprüfungen werden meist Verfahren eingesetzt, die auf der Punktquellensynthese (PQS) basieren, da sich so die Schallausbreitung mit relativ geringem Rechenaufwand simulieren lässt. Nachteilig ist jedoch, dass bei der Modellierung von Reflektoren weitere Vereinfachungen, wie z.B. die Kirchhoff-Näherung, notwendig sind und nur explizit modellierte Wellentypen bzw. Ausbreitungsvorgänge simuliert werden. Auf der anderen Seite gibt es numerische Simulationsverfahren, die auf der Diskretisierung der Wellengleichungen bzw. fundamentalen Grundgleichungen beruhen und alle physikalisch möglichen Ausbreitungs-, Reflexions- und Beugungseffekte simulieren. Letztere sind jedoch hinsichtlich der Größe des Simulationsvolumens und der simulierten Zeitdauer durch Speicher- und Rechenaufwand sowie durch Verfahrenseigenschaften wie numerische Dispersion beschränkt. Für große Stahlkomponenten ist zur Simulation der Ultraschallprüfung ein Verfahren erforderlich, das sowohl für große Schallwege als auch für komplexe Defekte geeignet ist. Hierzu wurde ein neuartiges Simulationsverfahren (3D-EFIT-EPQS) entwickelt, das die Vorteile der Punktquellensynthese mit denen der diskreten Simulation vereint. Die Schallausbreitung über große Wege und die Reflexion/Beugung an Defekten werden mittels Kopplung von Elastodynamischer Punktquellensynthese (EPQS) und Elastodynamischer Finiter Integrationstechnik (EFIT) modelliert. Im Rahmen dieses Beitrages wird das Simulationsverfahren vorgestellt und dessen Vorteile aufgezeigt. Es wird gezeigt, dass sich mit dem Verfahren das Fehlersignal im Fernfeld gängiger Prüfkopftypen effizient berechnen lässt, so dass eine dreidimensionale Defektmodellierung möglich wird. Die Simulationsergebnisse werden Messergebnissen an einem Testkörper gegenübergestellt.

			IngBüro DrIng. Marklein	SIEMENS
Ultras	schallprü	fung großer Stahll	komponenten	
Typische	e Charakterist	tika der Herstellungsprüfung	:	
Herster	ellungsprüfun	g im konturarmen Zustand		
Zylind	rische Geome	etrie (mit/ohne Innenbohrun	g)	
 Große 	Schmiedetei	le		
Lange	Schallwege	(im Meterbereich)		
Schal	lschwächung	ist abhängig von Material ur	nd Wärmebehandlung	
Mode	rate Prüffrequ	ienz (im unteren MHz-Berei	ch)	
Verweight	endungmehre	erer Einschallpositionen und	-richtungen	
(z.B. v	von der Mante	lfläche aus senkrecht und r	nit mehreren Einschallwinkeln)	
Seite 3	Mai 2013	Corporate Technology	Frei verwendbar © Siemens AG 2013. All	e Rechte vorbehalten.

				IngBüro DrIng. Marklein	di	SIEMENS
Rechen/Spei	cheraufv	vand 2D/3	BD-EFIT			
Simulationstyp		2D-EFIT	1		3D-EFIT	
Defektposition	100mm	100mm	1000mm	100mm	100mm	1000mm
Simulierter Bereich	10mm	100mm	10mm	10mm	100mm	10mm
Gittergröße	1k x 100	1k x 1k	10k x 100	1k x 100²	1k x 1k²	10k x 100 ²
Daten pro Gitterpunkt	5 x 8Byte	5 x 8Byte	5 x 8Byte	9 x 8Byte	9 x 8Byte	9 x 8Byte
Speicher	4MByte	40MByte	40MByte	720MByte	72GByte	7,2GByte
Zeitschritte	3400	3400	34k	4300	4300	43k
Rechenaufwand*)	1,7G	17G	170G	387G	38,7T	3,87T

*) In willkürlichen Einheiten, nur zum relativen Vergleich

→ 2D-EFIT auf leistungsfähigem PC implementierbar

→ 3D-EFIT auf leistungsfähigem PC implementierbar, wenn Simulationsbereich ausreichend klein

→ Diskrete Simulation langer Schallwege nicht sinnvoll wegen der Numerischen Dispersion

Seite 8

Mai 2013

Corporate Technology

Frei verwendbar © Siemens AG 2013. Alle Rechte vorbehalten.

Ergebnis	sse für KS	SR und KZ	ZR				
Um Messung Der Amplituc durch die S wiedergeg durch die c wider Frag	g und Simulatio lenquotient von Simulation von eben detailliertere Mo arten etwas wei	n zu vergleich Flachbodenb Kreisscheiber odellierung min niger gut wiede	en wird der Am ohrungen wird n (KSR) mit idea t Kreiszylinder (ergegeben	plitudenquc alisiertem A (KZR) und g	otient KSR4 nregungss emessene	4/KSR2 signal (R em Anreg	betrachtet. C2) sehr gut gungssignal
		0 0					
				4.0	Amplit	tudenqı	uotient
Größe	Messung	Sim KSR	Sim KZR	4,0 -	Ampli 3,271	tudenqu 3,288	uotient 3 3,375
Größe 2mm	Messung 26,36	Sim KSR 1,53	Sim KZR 1,52	4,0 - 3,0 -	Ampli 3,271	tudenqu 3,288	3,375
Größe 2mm 4mm	Messung 26,36 86,23	Sim KSR 1,53 5,03	Sim KZR 1,52 5,13	4,0 - 3,0 - 2,0 -	Ampli 3,271	tudenqu 3,288	3,375
Größe 2mm 4mm	Messung 26,36 86,23	Sim KSR 1,53 5,03	Sim KZR 1,52 5,13	4,0 - 3,0 - 2,0 - 1,0 -	Amplit 3,271	tudenqu 3,288	3 3,375
Größe 2mm 4mm	Messung 26,36 86,23	Sim KSR 1,53 5,03	Sim KZR 1,52 5,13	4,0 - 3,0 - 2,0 - 1,0 - 0,0 -	Ampli 3,271	tudenqu 3,288	3,375

